https://www.kaggle.com/datasets/hmavrodiev/london-bike-sharing-dataset
London bike sharing dataset
Historical data for bike sharing in London 'Powered by TfL Open Data'
www.kaggle.com
import numpy as np
import pandas as pd
import os
for dirname, _, filenames in os.walk('/kaggle/input'):
for filename in filenames:
print(os.path.join(dirname, filename))
import matplotlib.pyplot as plt
import seaborn as sns
import missingno as msno
df = pd.read_csv('/kaggle/input/london-bike-sharing-dataset/london_merged.csv', parse_dates = ['timestamp'])
df.head()
print('데이터 구조 :', df.shape)
print('데이터 타입 :', df.dtypes)
print('데이터 컬럼 :', df.columns)
df.isna().sum()
msno.matrix(df)
plt.show()
df['year'] = df['timestamp'].dt.year
df['month'] = df['timestamp'].dt.month
df['dayofweek'] = df['timestamp'].dt.dayofweek
df['hour'] = df['timestamp'].dt.hour
df.head()
df['year'].value_counts()
# df['month'].value_counts()
# df['dayofweek'].value_counts()
# df['weather_code'].value_counts()
'Programming Language > Python' 카테고리의 다른 글
[Python] read_csv의 parse_dates 옵션 사용해보기 (0) | 2022.05.04 |
---|---|
[Kaggle] London bike sharing dataset 그래프 그려보기 (0) | 2022.05.04 |
[Python] RL, 강화학습 Frozen-Lake Dummy Q-Learning 실행하는 방법 (0) | 2022.05.02 |
[Python] RL, 강화학습 Frozen Lake v1 자동실행 하는 방법 (0) | 2022.05.02 |
[Python] Keras로 생성한 모델 요약 출력하는 방법 (0) | 2022.04.29 |