'''
pip install pandas,beautifulsoup4,finance-datareader -y
'''
import pandas as pd
import FinanceDataReader as fdr
from datetime import datetime
from dateutil.relativedelta import relativedelta
def get_stock_code(name):
'''이름을 입력하면 코드를 리턴'''
df = fdr.StockListing('KRX')
stock_code = df[df['Name'] == name]['Code'].to_string(index = False)
return stock_code
if __name__ == '__main__':
before_one_week = (datetime.now() - relativedelta(years = 3)).strftime('%Y-%m-%d')
df_exchange_rate = fdr.DataReader(symbol = 'USD/KRW', start = before_one_week)[['Close']]
df_kospi = fdr.DataReader(symbol = 'KS11', start = before_one_week)[['Close']]
df_samsung_elec = fdr.DataReader(symbol = get_stock_code('삼성전자'), start = before_one_week)[['Close']]
df_samsung_pre_elec = fdr.DataReader(symbol = get_stock_code('삼성전자우'), start = before_one_week)[['Close']]
df_sk_hynix = fdr.DataReader(symbol = get_stock_code('SK하이닉스'), start = before_one_week)[['Close']]
df_db_hitek = fdr.DataReader(symbol = get_stock_code('DB하이텍'), start = before_one_week)[['Close']]
df_hanmi = fdr.DataReader(symbol = get_stock_code('한미반도체'), start = before_one_week)[['Close']]
moving_average_list = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50, 60, 120, 200, 240, 360, 400, 480, 600, 720]
result_dict = {}
for day in moving_average_list:
result_dict[f'avg_{day}'] = [
int(df_exchange_rate.tail(day).sum() / day),
int(df_kospi.tail(day).sum() / day),
int(df_samsung_elec.tail(day).sum() / day),
int(df_samsung_pre_elec.tail(day).sum() / day),
int(df_sk_hynix.tail(day).sum() / day),
int(df_db_hitek.tail(day).sum() / day),
int(df_hanmi.tail(day).sum() / day)]
df_result = pd.DataFrame(result_dict).T
df_result.columns = ['USD/KRW', 'KOSPI', 'SS_ELEC', 'SS_PRE_ELEC', 'SK_HINIX', 'DB_HITEK', 'HANMI']
for column_name in df_result.columns:
df_result[f'{column_name}_per'] = round(df_result[column_name] / df_result[column_name].iloc[0], 3) * 100
print(df_result)