https://www.kaggle.com/datasets/hmavrodiev/london-bike-sharing-dataset London bike sharing dataset Historical data for bike sharing in London 'Powered by TfL Open Data' www.kaggle.com import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename)) import matplotlib.pyplot as plt import seabo..
https://www.kaggle.com/datasets/hmavrodiev/london-bike-sharing-dataset London bike sharing dataset Historical data for bike sharing in London 'Powered by TfL Open Data' www.kaggle.com import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename)) import matplotlib.pyplot as plt import seabo..
기본형 df = pd.read_csv('/kaggle/input/london-bike-sharing-dataset/london_merged.csv') df.head() 데이터의 구조, 타입, 컬럼 확인하기 print('\n', df.shape) print('\n', df.dtypes) print('\n', df.columns) timestamp가 object 형인 것을 확인할 수 있다. 다음은 parse_dates 를 사용해보자. df = pd.read_csv('/kaggle/input/london-bike-sharing-dataset/london_merged.csv', parse_dates = ['timestamp']) # df = pd.read_c..
https://www.kaggle.com/datasets/hmavrodiev/london-bike-sharing-dataset London bike sharing dataset Historical data for bike sharing in London 'Powered by TfL Open Data' www.kaggle.com import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename)) import matplotlib.pyplot as plt import seabo..
https://www.kaggle.com/datasets/hmavrodiev/london-bike-sharing-dataset London bike sharing dataset Historical data for bike sharing in London 'Powered by TfL Open Data' www.kaggle.com import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename)) import matplotlib.pyplot as plt import seabo..