![](https://img1.daumcdn.net/thumb/R750x0/?scode=mtistory2&fname=https%3A%2F%2Fblog.kakaocdn.net%2Fdn%2Fb7guHa%2Fbtr1UROQWKX%2FHk8spnghNxl5vAn9UC5pWK%2Fimg.png)
데이터 엔지니어
![](https://img1.daumcdn.net/thumb/R750x0/?scode=mtistory2&fname=https%3A%2F%2Fblog.kakaocdn.net%2Fdn%2FbINxxg%2Fbtr0NHNpoCg%2F3tVlljaTEdwJw3Mo9PonI0%2Fimg.png)
[Python] Surprise 라이브러리로 최근접이웃 사용 방법
# Quick Start # input : 사용자ID, 아이템ID # Output : 평점 import pandas as pd from surprise import Dataset from surprise import Reader from surprise import KNNBasic from surprise.model_selection import train_test_split data = Dataset.load_builtin('ml-100k') df = pd.DataFrame(data.__dict__['raw_ratings'], columns = ['user_id', 'item_id', 'rating', 'timestamp']) df.drop(['timestamp'], axis = 1, inplace =..
![](https://img1.daumcdn.net/thumb/R750x0/?scode=mtistory2&fname=https%3A%2F%2Fblog.kakaocdn.net%2Fdn%2FbG9NAq%2Fbtr1dckuSMk%2FwYPtYm0qGZZLu72LHa4yVK%2Fimg.png)
[Python] Surprise 라이브러리로 예측평점과 실제평점 비교해보기
import pandas as pd from surprise import Dataset from surprise import Reader from surprise import SVD from surprise import accuracy from surprise.model_selection import train_test_split data = Dataset.load_builtin('ml-100k') df = pd.DataFrame(data.__dict__['raw_ratings'], columns = ['user_id', 'item_id', 'rating', 'timestamp']) df.drop(['timestamp'], axis = 1, inplace = True) reader = Reader(rat..
![](https://img1.daumcdn.net/thumb/R750x0/?scode=mtistory2&fname=https%3A%2F%2Fblog.kakaocdn.net%2Fdn%2Fc3dbk2%2Fbtr0KRJxnvk%2F5seKYfjXKEBvx9upEHwBQK%2Fimg.png)
[Python] Surprise 라이브러리로 사용자의 아이템 예측해보기
import pandas as pd from surprise import Dataset from surprise import Reader from surprise import SVD from surprise import accuracy from surprise.model_selection import train_test_split data = Dataset.load_builtin('ml-100k') df = pd.DataFrame(data.__dict__['raw_ratings'], columns = ['user_id', 'item_id', 'rating', 'timestamp']) df.drop(['timestamp'], axis = 1, inplace = True) # df reader = Reade..
![](https://img1.daumcdn.net/thumb/R750x0/?scode=mtistory2&fname=https%3A%2F%2Fblog.kakaocdn.net%2Fdn%2F2qO6q%2Fbtr0JO0Bidg%2FLN1iWxRck2XnGafedu15GK%2Fimg.png)
[Python] Surprise 라이브러리로 RMSE 출력하는 방법
import pandas as pd from surprise import Dataset from surprise import Reader from surprise import SVD from surprise import accuracy from surprise.model_selection import train_test_split data = Dataset.load_builtin('ml-100k') df = pd.DataFrame(data.__dict__['raw_ratings'], columns = ['user_id', 'item_id', 'rating', 'timestamp']) df.drop(['timestamp'], axis = 1, inplace = True) reader = Reader(rat..
![](https://img1.daumcdn.net/thumb/R750x0/?scode=mtistory2&fname=https%3A%2F%2Fblog.kakaocdn.net%2Fdn%2FJSDlA%2Fbtr0JN1BZBA%2FZVotk8cQXrXbdNHCpqPWdk%2Fimg.png)
[Python] Surprise 라이브러리로 간단하게 평점 예측해보기
import pandas as pd from surprise import Dataset from surprise import Reader from surprise import SVD from surprise.model_selection import train_test_split data = Dataset.load_builtin('ml-100k') df = pd.DataFrame(data.__dict__['raw_ratings'], columns = ['user_id', 'item_id', 'rating', 'timestamp']) df.drop(['timestamp'], axis = 1, inplace = True) reader = Reader(rating_scale=(1, 5)) data = Datas..
![](https://img1.daumcdn.net/thumb/R750x0/?scode=mtistory2&fname=https%3A%2F%2Fblog.kakaocdn.net%2Fdn%2FlHXT5%2FbtrZ7rjxMnF%2FM31oArTHhQnYHhZx2Dc4Ak%2Fimg.png)
[Python] 5년 주가차트와 주가/평균가격 차트 비교하는 방법
- DB하이텍 - 5년 주가 ''' pip install pandas,beautifulsoup4,finance-datareader,matplotlib,cufflinks,chart_studio -y ''' import FinanceDataReader as fdr import cufflinks as cf import plotly.offline as plyo import pandas as pd # import matplotlib.pyplot as plt from datetime import datetime from dateutil.relativedelta import relativedelta def get_stock_code(name): df = fdr.StockListing('KRX') stock_code ..
![](https://img1.daumcdn.net/thumb/R750x0/?scode=mtistory2&fname=https%3A%2F%2Fblog.kakaocdn.net%2Fdn%2FAld24%2FbtrZ0JlgycD%2FtyGTDxdIZrk49bCoqK7gr0%2Fimg.png)
[Python] 삼성전자 시가 고가 저가 종가 캔들 그래프 그리는 방법
- 삼성전자 ''' pip install pandas,beautifulsoup4,finance-datareader,matplotlib,cufflinks,chart_studio -y ''' import FinanceDataReader as fdr import cufflinks as cf import plotly.offline as plyo import pandas as pd # import matplotlib.pyplot as plt from datetime import datetime from dateutil.relativedelta import relativedelta def get_stock_code(name): df = fdr.StockListing('KRX') stock_code = df[df['..